Citron binds to PSD-95 at glutamatergic synapses on inhibitory neurons in the hippocampus.

نویسندگان

  • W Zhang
  • L Vazquez
  • M Apperson
  • M B Kennedy
چکیده

Synaptic NMDA-type glutamate receptors are anchored to the second of three PDZ (PSD-95/Discs large/ZO-1) domains in the postsynaptic density (PSD) protein PSD-95. Here, we report that citron, a protein target for the activated form of the small GTP-binding protein Rho, preferentially binds the third PDZ domain of PSD-95. In GABAergic neurons from the hippocampus, citron forms a complex with PSD-95 and is concentrated at the postsynaptic side of glutamatergic synapses. Citron is expressed only at low levels in glutamatergic neurons in the hippocampus and is not detectable at synapses onto these neurons. In contrast to citron, p135 SynGAP, an abundant synaptic Ras GTPase-activating protein that can bind to all three PDZ domains of PSD-95, and Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) are concentrated postsynaptically at glutamatergic synapses on glutamatergic neurons. CaM kinase II is not expressed and p135 SynGAP is expressed in less than half of hippocampal GABAergic neurons. Segregation of citron into inhibitory neurons does not occur in other brain regions. For example, citron is expressed at high levels in most thalamic neurons, which are primarily glutamatergic and contain CaM kinase II. In several other brain regions, citron is present in a subset of neurons that can be either GABAergic or glutamatergic and can sometimes express CaM kinase II. Thus, in the hippocampus, signal transduction complexes associated with postsynaptic NMDA receptors are different in glutamatergic and GABAergic neurons and are specialized in a way that is specific to the hippocampus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Citron, a Rho-target, interacts with PSD-95/SAP-90 at glutamatergic synapses in the thalamus.

Proteins of the membrane-associated guanylate kinase family play an important role in the anchoring and clustering of neurotransmitter receptors in the postsynaptic density (PSD) at many central synapses. However, relatively little is known about how these multifunctional scaffold proteins might provide a privileged site for activity- and cell type-dependent specification of the postsynaptic si...

متن کامل

Acute Inactivation of PSD-95 Destabilizes AMPA Receptors at Hippocampal Synapses

Postsynatptic density protein (PSD-95) is a 95 kDa scaffolding protein that assembles signaling complexes at synapses. Over-expression of PSD-95 in primary hippocampal neurons selectively increases synaptic localization of AMPA receptors; however, mice lacking PSD-95 display grossly normal glutamatergic transmission in hippocampus. To further study the scaffolding role of PSD-95 at excitatory s...

متن کامل

D-Serine and Serine Racemase Are Associated with PSD-95 and Glutamatergic Synapse Stability

D-serine is an endogenous coagonist at the glycine site of synaptic NMDA receptors (NMDARs), synthesized by serine racemase (SR) through conversion of L-serine. It is crucial for synaptic plasticity and is implicated in schizophrenia. Our previous studies demonstrated specific loss of SR, D-serine-responsive synaptic NMDARs, and glutamatergic synapses in cortical neurons lacking α7 nicotinic ac...

متن کامل

Characterization of guanylate kinase-associated protein, a postsynaptic density protein at excitatory synapses that interacts directly with postsynaptic density-95/synapse-associated protein 90.

The structure of central synapses is poorly understood at the molecular level. A recent advance came with the identification of the postsynaptic density-95 (PSD-95)/synapse-associated protein 90 family of proteins as important mediators of the synaptic clustering of certain classes of ion channels. By yeast two-hybrid screening, a novel protein termed guanylate kinase-associated protein (GKAP) ...

متن کامل

Spatial patterning of excitatory and inhibitory neuropil territories during spinal circuit development.

To generate rhythmic motor behaviors, both single neurons and neural circuits require a balance between excitatory inputs that trigger action potentials and inhibitory inputs that promote a stable resting potential (E/I balance). Previous studies have focused on individual neurons and have shown that, over a short spatial scale, excitatory and inhibitory (E/I) synapses tend to form structured t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 19 1  شماره 

صفحات  -

تاریخ انتشار 1999